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LEITER TO THE EDITOR 

Magnetization and universal sub-critical behaviour in 
two-dimensional XY magnets 
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t lnstilut hue-Langffln, l%X, 38042 Grenoble, France 
$ Laboratoire de Physique, Emle Normale SupMeure de Lyon, 69634Lyon, France 

Received 20 November 1992 

AbstracL Layered magneu, considered to be experimental realizations of the w XY 
model, have a magnetization with a characteristic exponent @ = 0 . 2 .  We show, using 
modified renormalization group equations, that this value of f l  is a universal signature 
of finite-sized w XY behaviour. We present simulation data in agreement with both the 
calculation and the experimental observations. 

The two-dimensional XY model has long presented an interesting problem to both 
theoreticians [I] and experimentalists [2-S]. In the thermodynamic limit, at finite 
temperatures and in zero magnetic field the model cannot sustain long-range order 
191, but nevertheless exhibits a Xosterlitz-Thouless-Berezinsldi’ phase transition [lo] 
involving the unbinding of spin vortices at a critical temperature TKT. In the low- 
temperature phase of bound vortices the correlation length remains infinite and the 
magnetization zero, as a result of the excitation of long-wavelength spin waves. The 
critical exponents q and 6 vary continuously with temperature [ll], but the exponents 
p, 7 and U are undefined. 

Layered Heisenberg magnets with planar anisotropy can be treated as quasi-zD 
XY systems [12]. In these materials the spontaneous magnetization is stabilized by 
weak 3D coupling J’ which determines the asymptotic critical behaviour. However 
at lower temperature there is a very sharp crossover to a second regime, which we 
refer to as ’sub-critical’. The magnetization exponents p measured in thi range are 
listed in table 1. The compounds BaNi,(PO,),, Rb,CrCI, and K,CuF, are the best 
approximations to the ideal and represent a variety of lattice types, spin values and 
degrees of planar anisotropy. All have a well defined p = 0.23. The other compounds 
in the list have p varying between 

Using modified renormalization group (RG) equations, we show that the 
magnetization of an arbitrarily large, but finite, ZD XY model approaches power-law 
behaviour over a restricted temperature range, with an effective exponent p = 0.23. 
Thii is a universal properly of the ZDXYmodel and can be regarded, when observed in 
experiment, as a signature of ZD XY behaviour. We present Monte Carlo simulations 
in agreement with our calculation, and finally discuss the relationship between the 
calculation, and the experimental results of table 1. 

Although there is no broken symmetry in the ZD XY model [9] the spin-spin 
correlation function has power-law decay at low temperature. This slow decay with 

0.18 and -z 0.26 [13]. 
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Table 1. Critical exponents p and the conspnding range of lrduced temperature 
(1- T/Tc), measured for zoXYsystems [lZ] (F = ferromagnet. A = antiferromagnet, 
Fa = (HCOz), Ur = (CO(NHz)z)). 

Commund l b e  6 Ranze Reference 

A 0.23 
F 0.22 
F 0.23 
A 0.23 
F 0.26 
F 0.26 
A 0.18 
A 0.2 
A 0.22 
A 0.22 

0.02-0.4 
O.Md.3 
O.&> 0.15 
0.024.3 
0.04-0.8 
0.034.9 
0.04-0.4 
O.OM.3 
0.066.3 
0.01-0.5 
0.015-0.5 

distance ensures a magnetization in a finite system 1141. A spin-wave analysis on a 
system of N spins, at low temperature gives for the magnetization M [15] 

where K = J/kBT is the spin-wave stillness and J is the coupling constant Equation 
(1) includes the definition of the magnetization in terms of the XY spin vectors S;. 

At this point it is worthwhile clarifying what is meant by finite size. In the original 
theory of Kosterlitz and Thouless [lo] IC takes the value 2 / r  at Tm and so an order 
of magnitude estimate for M at Tm is 

M = (1/2N)'/'6. 

Putting N = 1 6  gives M Y 0.47, indicating that finite-size effects will always 
be present in the biggest simulations, while putting N N 1016-1017, which would 
correspond to a sample with an area equal to that of this page, still gives M Y 0.1. 
It is clear that the thermodynamic limit is inaccessible for the ZD XY model, that at 
low temperatures a magnetization will always be present, and that the variation of M 
with T should be described by two-dimensional fluctuations 

In layered magnets, only fluctuations on length scales less than the order of 
Le, = (J/J') '/ '  are two-dimensional [14,16], which means that ZD behaviour should 
occur when the correlation length is less than heS. Hence much can be learned about 
the experimental systems, outside the threedimensional critical region, by studying 
finite ZD systems of size L,. vpically J / J '  is in the range 16-104, giving effective 
finite sizes that can easily be simulated using a work station. In figure 1 we show 
Monte Carlo simulation results for the magnetization versus temperature of ZD X Y  
samples of N = 1024 and N = 104 spins, on a square lattice with periodic boundary 
conditions. The data were averaged over 3-5 runs with 1 6  Monte Carlo steps per 
particle per temperature, the first 20,000 of which were used for equilibration. At 
Tm, RG calculations [17] predict a discontinuous change to a disordered phase with a 
'universal jump' to zero in the effective spin-wave stiffness Ke, [18]. A magnetization 
exists in a finite system as long as K,, is non-zero. However, the universal jump is 
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rounded out as the exclusion of length s c a b  greater than L (= o), the system 
size, means that the spin-wave stiffness is no longer renormalized to zero above Tm. 
The magnetization falls steeply, yet continuously, and T' is no longer a special 
temperature. 

- a - 
0.6 - - 

M - 
- 

- 0.62 " 8  - 

- O o 7  

* 
0.2 0 - - 

0.6 

a b ,  

0.92 0.94 0.96 
T 

0 

Figure 1. Magnetization versus temperature for a system of N = 1024 (open circles) 
and N = 10' spins (open triangles). The arrows mark T' and Tc for each curve, with 
TC > T' (up arrow are for N = lo4; dawn arrows for N = 1024). Insec behaviour 
near T* for N = 1024 spins. R e  line is the theoretical magnetization curve and the 
full circle is T' (see text). 

To calculate an effective critical exponent p, we need to have a good estimate 
for M in the region of temperature 2 T,, and to define an effective transition 
temperature T,. For this we use the linearized RG equations [11,17], which we 
rewrite in a form suitable for finite-size scaling [19]. We then substitute K for the 
renormalid IC,, in the magnetization expression (1). Defining x 

x = TIr, ,  - 2 (2) 

the RG equations can be solved for T > T, and small I, to give 

where the temperature is in units of J/kB, b, is the lattice rescaling parameter, c is a 
constant (Y 2.1 [Ill),  and xi and xf are the initial and final values of the parameter 
x. The direction of the flow is such chat xi > xt. As b, diverges the initial details 
are lost and one has [ 161 
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By malcing the substitution L ~r b, we can calculate the properties of a finite system 
of size L ,  and then use L as the rescaling parameter 1191. In the finite system the 
point at which a = 0, giving ICe, its universal value Z/T [ll], occurs at a shifted 
temperature T' 

Unlike in the case of the infinite system, dI(,,/dT is finite at the temperature 
T', so one choice of Tc is the temperature at which IC,, = O(a = -2). A more 
realistic choice is the temperature at which the correlation length, c, becomes equal 
to the system sue. For the infinite system and for T > Tm, Kosterlitz [U] defined E 
as the value of the rescaling parameter at which there is a significant deviation from 
fixed-point behaviour, that is, a no longer close to zero. The deviation from I N 0 is 
sudden, and E is identified by putting the argument of the tangent in (4) equal to T,  

giving 

The quantitative validity of (6) is confirmed by the results of Gupta er al [ZO]. With 
L one finds 

For large L, the difference between these two choices of T, bemmes negligible 
compared with the shift Tc,- T'. 

Expression (1) for A4 IS derived by summing spin-wave contributions over all 
wavelengths up to L and so is exact if the spin-wave stiffness is independent of 
wavelength, which is not the case in the presence of vortices. However, the summation 
is dominated by the long-wavelength components, and so we may replace K in (1) by 
IC,, if the spin-wave stiffness varies sufficiently slowly with wavelength. This condition 
is met in the finite system for T 2 T'. 

We define the exponent p as 

where t = T, - T.  As L becomes very large, there is no error incurred by replacing 
IC by ICe5 in ( l ) ,  and making (4)-(7) into equalities. At t' = T, - T', we arrive, 
after some algebra, at a quite remarkable universal result 

3x2 P(L,T ' )= -=0.231.... 
128 (9) 

As L - w,Tc and T' converge on T,, the magnetization disappears, and the 
behaviour passes smoothly to that of KT theory. However the result (9) remains 
valid until the limit, at which point p becomes undefined. The calculation gives the 
universal value at T' only, and we anticipate that the range of temperature over 
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1 

M 

0.4 

0.01 0.1 1 
Tc - T 

F i p m  Z LogloM versus loglo(Tc - T) for N = 1024 (open circles) and N = 10' 
(open tciangk) spin systems. Full poinu: theoretical T'. and the lines are of slope 
,E = 3dj128. 

which (9) is a good estimate for p will be non-universal. For finite L, the various 
approximations in the calculation introduce corrections to p of order P/ln(L2). 
These are not negligible for the system sizes studied (0.23/In(1024) 2 0.02), and 
it is clear that one can only have full confidence in this result for very large system 
sizes, where corrections are negligible term by term. However, the individual terms 
cancel out to some extent, and the validity of the calculation for these relatively small 
systems can be tested directly by comparison with Monte Carlo data. 

The above results give us a recipe for choosing T, for the numerical results. First 
we calculate the temperature at which M = ( 1/2N)'l's, corresponding to D = 0 
and K,, = 2/a. This locates T', and defines T, following 

T, - Tw = 4( T' - Tw) (10) 

the best estimate for Tm being 0.898 [ZO]. We can test the consistency of this 
argument by calculating the constant c from equation (5). Kosterlitz [Ill gives 
c Y 2.1, and from the parameter bc of Gupta et al [20,21], c N 2.35 in the 
paramagnetic region. 

Using this recipe on the data for the 1024-spin system gives T' = 0.943 zk 0.001 
(see inset, figure l), T ,  = 1.0804 0.004,~ = 2.48. A pragmatic choice of T ,  to give 
the best power-law behaviour gives T, = 1.080 f 0.002, in vely accurate agreement. 
An analysis on the 104spin system is also in accurate agreement with the calculation, 
with c Y 2.2. For both systems Tc is confirmed to be close to the point where the 
magnetization starts to develop (see figure 1). Plots of logM versus log(T, - T) 
are shown in figure 2, where the straight lines have slopes of 3rrz/128. To within 
the uncertainty on c, the lines of figure 2 and figure 1 (inset) describe the data at 
T' with no adjustable parameters. A comparison of the data for the two systems in 



U 8  Letter to the Editor 

figure 2 shows how non-universal spin-wave behaviour gives way to universal scaling 
behaviour near T'. The range of p N 0.23 is smaller for the bigger system. 

In addition to the interplanar coupling J', real materials often have a weak n- 
fold crystal field h,, but to our knowledge, only the case of h, has been studied in 
detail [22]. It appears that Le, is determined by J' even when h, B J', which is 
consistent with h, being a marginal variable [17]. For a general weakly perturbed 
system, the spontaneous magnetization vanishes with a critical behaviour characteristic 
of the perturbation. At low temperatures, once the correlation length drops below 
the length scale required to make the perturbation relevant, all that is left are ZD 
fluctuations. 

0.23 in layered 
magnets, where J /  J' N l@-l@ (see table 1). These estimates of p were measured 
relative to the 3D ordering temperature TSD. p = 0.23 is observable because the small 
extent of the 3D critical region ensures that T, N T3? and that T' is outside the m- 
3D crossover region. The temperature at which q = 3 [ll], which we now interpret as 
T', has been located in experiments on K p F ,  [5],  Rh2CrCI, [8] and Rb,CrCl,Br, 
[Z], and in previous computer simulations 1241. In future publications we shall 
present a detailed analysis where we demonstrate agreement between experiment 
and theory for all these systems 17,231. 

Our principal conclusion is that p = 0.23 is a properly of the ZD XY model that 
is observed in real systems. The general predictions of our calculation agree with 
experiment and computer simulations to a high degree of accuracy, although this is 
perhaps surprising, given the expected logarithmic errors. Our results strongly suggest 
that KT theory is relevant to real magnets. 

It is a pleasure to thank J-L Barrat, M J P Gingras and R B Stinchcombe for useful 
discussions. 

The results of figure 2 are consistent with the range of p 
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