IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Magnetization and universal sub-critical behaviour in two-dimensional XY magnets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 L53
(http://iopscience.iop.org/0953-8984/5/4/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 12:52

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/4
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

I. Phys.: Condens. Matter § (1993) LS3-L59. Printed in the UK

LETTER TO THE EDITOR

Magnetization and universal sub-critical behaviour in
two-dimensional XY magnets

S T Bramwellj and P C W Holdsworth}

t Institut Laue-Langevin, 156-X, 38042 Grenoble, France
1 Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 69634 Lyon, France

Received 20 November 1992

Abstract. Lavered magnets, considered to be experimental realizations of the 20 XY
model, have a2 magnetization with a characteristic exponent 8 = 0.23. We show, using
modified renormalization group equations, that this value of 8 is a universal signature
of finite-sized 2D XY behaviour. We present simulation data in agreement with both the
calculation and the experimental observations.

The two-dimensional XY model has long presented an interesting problem to both
theoreticians [1] and experimentalists [2-8]. In the thermodynamic limit, at finite
temperatures and in zero magnetic field the model cannot sustain Jong-range order
[9], but nevertheless exhibits a ‘Kosterlitz-Thouless-Berezinskii’ phase transition. [10]
involving the unbinding of spin vortices at a critical temperature Tyy. In the low-
temperature phase of bound vortices the correlation length remains infinite and the
magnetization zero, as a result of the excitation of long-wavelength spin waves. The
critical exponents n and & vary continuously with temperature [11], but the exponents
B, v and v are undefined.

Layered Heisenberg magnets with planar anisotropy can be treated as quasi-2D
XY systems [12]. In these materials the spontaneous magnetization is stabilized by
weak 3D coupling J’ which determines the asymptotic critical behaviour. However
at lower temperature there is a very sharp crossover to a second- regime, which we
refer to as ‘sub-critical’. The magnetization exponents  measured in this range are
listed in table 1. The compounds BaNi,(PO,),, Rb,CrCl, and K,CuF, are the best
approximations to the ideal and represent a variety of lattice types, spin values and
degrees of planar anisotropy. All have a well defined @ = (.23, The other compounds
in the list have § varying between ~ 0.18 and ~ 0.26 [13].

Using modified renormalization group (RG) equations, we show that the
magnetization of an arbitrarily large, but finite, 2D XY model approaches power-law
behaviour over a restricted temperature range, with an effective exponent 3 = 0.23.
This is a universal property of the 2D XY model and can be regarded, when observed in
experiment, as a signature of 2D XY behaviour. We present Monte Carlo simulations
in agreement with our calculation, and finally discuss the relationship between the
calculation, and the experimental results of table 1.

Although there js no broken symmetry in the 2D XY model [9] the spin-spin
correlation function has power-law decay at low temperature. This slow decay with
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Table 1. Critical exponents § and the corresponding range of reduced temperaturs
{1- T/T¢), measured for 20 XY systems [12] (F = ferromagnet, A = antiferromagnet,

Fo = (HCO;), Ur = (COQH:)2)).

Compound Bpe B Range Reference
BaNi»(POs}2 A 0.23  0.02-04 [2]
K,CuF, F 0.22  0.02-03 4]
Rb:CrCly F 0.23 003>015 {7
GdyCuC,y A 0.23 0.02-0.3 [25]
Rb:CrCl3Rr; F 0.26 0.04-0.8 [26]
Rb,CrCl;Br F 0.26 0.03-0.9 [26]
CoCl; - 6H,0 A 0.18 0.04-0.4 3
Rb,FeF; A 0.2  0.03-03 3]
CuFo; - 4H;0 A 0.22 0.06-0.3 [27,13)
CuFo, - 2Ur-2H,0 A 0.22  0.01-05 [27,13]
MnFoy - 2H; 0 A 0.23 0.015-0.5 3. 13]

distance ensures a magnetization in a finite system [14]. A spin-wave analysis on a
system of N spins, at low temperature gives for the magnetization M [15]

o= 5 l) - ()™

i=I,N

where K = J/kpT is the spin-wave stiffness and J is the coupling constant. Equation
{1) includes the definition of the magnetization in terms of the XY spin vectors S,.

At this point it is worthwhile clarifying what is meant by finite size. In the original
theory of Kosterlitz and Thouless {10] K takes the value 2/m at Tip and so an order
of magnitude estimate for M at Typ is

M = (1/2N)Y/18,

Putting N = 10° gives M ~ 0.47, indicating that finite-size effects will always
be present in the biggest simulations, while putting N ~ 10'5-10"7, which would
correspond to a sample with an area equal to that of this page, still gives M ~ 0.1,
It is clear that the thermodynamic limit is inaccessible for the 2D XY model, that at
low temperatures a magnetization will always be present, and that the variation of M
with T should be described by two-dimensional fluctuations.

In layered magnets, only fluctuations on length scales less than the order of
Log = (J/J"Y? are two-dimensional [14, 16], which means that 2D behaviour should
occur when the correlation length is less than L_z;. Hence much can be Jearned about
the experimental systems, outside the three-dimensional critical region, by studying
finite 2D systems of size L.y. Typically J/J' is in the range 10°-10%, giving effective
finite sizes that can easily be simulated using a work station. In figure 1 we show
Monte Carlo simulation results for the magnetization versus termaperature of 20 XY
samples of N = 1024 and N = 10* spins, on a square lattice with periodic boundary
conditions. The data were averaged over 3-5 runs with 10° Monte Carlo steps per
particle per temperature, the first 20,000 of which were used for equilibration. At
Tk, RG calculations [17] predict a discontinuous change to a disordered phase with a
‘universal jump’ to zero in the effective spin-wave stiffness K 5 [18]. A magnetization
exists in a finite system as long as K is non-zero. However, the universal jump is
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rounded out as the exclusion of length scales greater than L (= +/N), the system
size, means that the spin-wave stiffness is no longer renormalized to zero above Ty,
The magnetization falls steeply, yet continuously, and T is no longer a special
temperature.,
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Figure 1. Magnetization versus temperature for a system of N = 1024 (open circles)
and N = 10* spins (open triangles). The arrows mark T and T for each curve, with
Te > T (up arrows are for N = 10% down arrows for N = 1024). Inset: behaviour
near T* for N = 1024 spins. The line is the theoretical magnetization curve and the
full circle is T* (see text).

To calculate an effective critical exponent 3, we need to have a good estimate
for M in the region of temperature > Tit, and to define an effective transition
temperature T.. For this we use the linearized RG equations [11,17], which we
rewrite in a form suitable for finite-size scaling [19]. We then substitute K for the
renormalized K4 in the magnetization expression (1). Defining »

z=7K 42 (2)

the RG equations can be solved for T' > Ty and small z, to give

b = exp {_,,_1_ (t VT=Tq) _ 1 VT = Tir) )] ®
V(T — Tr) zq z;

where the temperature is in units of J/ kg, b; is the lattice rescaling parameter, c is a

constant (~ 2.1 [11]), and #; and =z, are the initial and final values of the parameter

z. The direction of the flow is such that 2; > z;. As & diverges the initial details

are lost and one has [16]

T~ Vel -Tg) )
tan {In() /(T - Tm)]
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By making the substitution L ~ b, we can calculate the properties of a finite system
of size L, and then use L as the rescaling parameter [19]. In the finite system the
point at which = = 0, giving K4 its universal value 2/= [11], occurs at a shifted
temperature T

2

()

Unlike in the case of the infinite system, df( /dT is finite at the temperature
T*, s0 one choice of T is the temperature at which K4 = 0(z = ~2). A more
realistic choice is the temperature at which the correlation length, £, becomes equal
to the system size. For the infinite system and for T > Ty, Kosterlitz [11] defined £
as the value of the rescaling parameter at which there is a significant deviation from
fixed-point behaviour, that is,  no longer close to zero. The deviation from = ~ 0 is
sudden, and ¢ is identified by putting the argument of the tangent in (4) equal to =,
giving

£ ~exp (—m) . (6

The quantitative validity of (6) is confirmed by the results of Gupta et al [20]. With
L =& one finds

2
For large L, the difference between these two choices of T, becomes negligible
compared with the shift T — T,

Expression (1) for M is derived by summing spin-wave contributions over all
wavelengths up to L and so is exact if the spin-wave stiffness is independent of
wavelength, which is not the case in the presence of vortices, However, the summation
is dominated by the long-wavelength components, and so we may replace K in (1) by
K4 if the spin-wave stiffness varies sufficiently slowiy with wavelength. This condition
is met in the finite system for T > T™.

We define the exponent 3 as

dlnM(L,T)
amn(:(L)) |,
where t = T — T. As L becomes very large, there is no error incurred by replacing

K by K.q in (1), and making (4)—(7) into equalities. At ¢* = T, — T™, we arrive,
after some algebra, at a quite remarkable universal result:

8(L,T) = [ ®

B(L,T*) = % = 0231 9
) = Jog = 0231.... 9)
As L — oo, T and T converge on Tir, the magnetization disappears, and the
behaviour passes smoothly to that of KT theory. However the result () remains
valid until the limit, at which point 8 becomes undefined. The calculation gives the
universal value at T* only, and we anticipate that the range of temperature over
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Figare 2. Logyof versus logi(Te — T) for N = 1024 {open circles) and N = 10*
(open triangles) spin systems. Full points: theoretical T'*, and the lines are of slope

A= 3nt/128.

which (9) is a good estimate for 3 will be non-universal. For finite L, the various
approximations in the calculation introduce corrections to 8 of order 3/In(L?).
These are not negligible for the system sizes studied (0.23/1n(1024) ~ 0.02), and
it is clear that one can only have full confidence in this result for very large system
sizes, where corrections are negligible term by term. However, the individual terms
cancel out to some extent, and the validity of the calculation for these relatively small
systems can be tested directly by comparison with Monte Carlo data.

The above results give us a recipe for choosing T for the numerical results. First
we calculate the temperature at which M = (1/2N)'/5, corresponding to z = 0
and K.z = 2/=. This locates T, and defines T following

Te—Ter =HT = Tiy) (10)

the best estimate for Typ being 0.898 [20]. We can test the consistency of this
argument by calculating the constant ¢ from equation (5). Kosterlitz [11] gives
¢ ~ 2.1, and from the parameter b, of Gupta et al [20,21], ¢ =~ 2.35 in the
paramagnetic region.

Using this recipe on the data for the 1024-spin system gives T™ = 0.943 = 0.001
(see inset, figure 1), T = 1.080+ 0.004,c = 2.48. A pragmatic choice of T to give
the best power-law behaviour gives T, = 1.080 + 0.002, in very accurate agreement.
An analysis on the 10°spin system is also in accurate agreement with the calculation,
with ¢ ~ 2.2. For both systems T is confirmed to be close to the point where the
magnetization starts to develop (see figure 1). Plots of log M versus log(T, — T)
are shown in figure 2, where the straight lines have slopes of 37%/128. To within
the uncertainty on ¢, the lines of figure 2 and figure 1 (inset) describe the data at
T* with no adjustable parameters. A comparison of the data for the two systems in
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figure 2 shows how non-universal spin-wave behaviour gives way to universal scaling
behaviour near T". The range of 8 ~ 0.23 is smaller for the bigger system.

In addition to the interplanar coupling J’, real materials often have a weak n-
fold crystal field k,, but to our knowledge, only the case of 4, has been studied in
detail [22]. It appears that L g is determined by J' even when h, >» J', which is
consistent with h, being a marginal variable [17]. For a general weakly perturbed
system, the spontaneous magnetization vanishes with a critical behaviour characteristic
of the perturbation. At low temperatures, once the correlation length drops below
the length scale required to make the perturbation relevant, all that is left are 2D
fluctuations.

The results of figure 2 are consistent with the range of 8 =~ 0.23 in Jayered
magnets, where J/J' ~ 10*-10* (see table 1). These estimates of 3 were measured
relative to the 3D ordering temperature T 3 = 0.23 is observable because the small
extent of the 3D critical region ensures that Tz ~ T;p, and that T is outside the 2D-
3D crossover region. The temperature at which n = 7 [11], which we now interpret as
T*, has been located in experiments on K,CuF, [5], Rb,CrCl, [8] and Rb,CrCl,Br,
[22], and in previous computer simulations [24]. In future publications we shall
present a detailed analysis where we demonstrate agreement between experiment
and theory for all these systems [7,23].

Our principal conclusion is that 8 = 0.23 is a property of the 2D XY model that
is observed in real systems. The general predictions of our calculation agree with
experiment and computer simulations to a high degree of accuracy, although this is
perhaps surprising, given the expected logarithmic errors. Our results strongly suggest
that KT theory is relevant to real magnets.

it is a pleasure to thank J-L Barrat, M J P Gingras and R B Stinchcombe for useful
discussions.
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